
CCAS and SEAS Computing Facility

HPC Workshop 2

What we're covering:

● Review Cluster Architecture

● Working with SLURM

● Simple job submission script

● How to submit job script

● sinfo, salloc, squeue, scancel, sbatch, srun

● Tips for scripting submit files

● Reporting Job Errors

Cluster Architecture

Cluster Architecture

● Login Node - Server that acts as your interface to the
cluster

● Scheduler - Server that schedules jobs
● Compute Nodes - Servers that run jobs

Cluster Architecture

Cluster Architecture (Storage)

Cluster Architecture (Storage)

Working with SLURM

Overview: Slurm is an open source, fault-tolerant, and highly scalable cluster

management and job scheduling system for large and small Linux clusters.

● Slurm requires no kernel modifications for its operation and is relatively
self-contained. As a cluster workload manager, Slurm has three key functions:

●
○ First, it allocates exclusive access to resources (compute nodes) for users for

some duration of time so they can perform work.
○ Second, it provides a framework for starting, executing, and monitoring work

(normally a parallel job) on the set of allocated nodes.
○ Finally, it arbitrates contention for resources by managing a queue of pending

work.

Working with SLURM

Why use SLURM?

● SLURM allows jobs to be scheduled so a user does not have to wait until a node is
free to begin work. SLURM does the waiting for you!

● SLURM allows resources to be prioritized for groups that purchase shares on
Colonial One.

● SLURM enables efficient use of the cluster since it constantly monitors resources in
use and schedules jobs on unallocated resources as they free up

● SLURM runs a job based on a submit script.
● A submit script calls your job script to execute your calculations.
●

Architecture I

As depicted in Figure 1, Slurm consists of a slurmd daemon running on each compute

node and a central slurmctld daemon running on a management node (with optional

fail-over twin). The slurmd daemons provide fault-tolerant hierarchical communications.

The user commands include: sacct, salloc, sattach, sbatch, sbcast, scancel, scontrol,

sinfo, smap, squeue, and srun. All of the commands can run anywhere in the cluster.

Figure 1. Slurm components

Architecture II

The entities managed by these Slurm daemons, shown in Figure 2, include nodes, the compute resource in Slurm,

partitions, which group nodes into logical (possibly overlapping) sets, jobs, or allocations of resources assigned to a user

for a specified amount of time, and job steps, which are sets of (possibly parallel) tasks within a job. The partitions can be

considered job queues, each of which has an assortment of constraints such as job size limit, job time limit, users permitted

to use it, etc. Priority-ordered jobs are allocated nodes within a partition until the resources (nodes, processors, memory,

etc.) within that partition are exhausted. Once a job is assigned a set of nodes, the user is able to initiate parallel work in

the form of job steps in any configuration within the allocation. For instance, a single job step may be started that utilizes all

nodes allocated to the job, or several job steps may independently use a portion of the allocation.

Figure 2. Slurm entities

Software, Modules & Login

● Common software is available to all users via the “module” system

● Can I install my own software?

○ Yes, provided it runs from your home/group directory

○ Users cannot use a package manager (yum) to install software

○ Colonial One users do not have root on Colonial One

Login to Colonial One using your GW NetID/email address & password

 $ ssh <netid>@login.colonialone.gwu.edu

SLURM Commands

sinfo
● lists node and partition information for the cluster
● useful for finding unallocated nodes

Example: type "sinfo" at the prompt

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
defq* up 14-00:00:0 128 alloc node[033-160]
short up 2-00:00:00 95 alloc node[097-191]
128gb up 14-00:00:0 24 alloc node[041-064]
256gb up 14-00:00:0 8 alloc node[033-040]
2tb up 14-00:00:0 1 alloc node901
gpu up 7-00:00:00 22 alloc node[003-020,029-032]
gpu up 7-00:00:00 10 idle node[001-002,021-028] ← Free nodes!
gpu-noecc up 7-00:00:00 22 alloc node[003-020,029-032]
gpu-noecc up 7-00:00:00 10 idle node[001-002,021-028] ← Free nodes!
ivygpu up 7-00:00:00 21 idle node[333-353] ← Free nodes!
ivygpu-noecc up 7-00:00:00 21 idle node[333-353] ← Free nodes!
allgpu-noecc up 7-00:00:00 22 alloc node[003-020,029-032]
allgpu-noecc up 7-00:00:00 31 idle node[001-002,021-028,333-353] ← Free
nodes!
debug up 4:00:00 2 alloc node[991-992]
debug-cpu up 4:00:00 1 alloc node992
debug-gpu up 4:00:00 1 alloc node991

SLURM Commands

salloc - Obtain a Slurm job allocation (a set of nodes),
execute a command, and then release the allocation
when the command is finished. You can use salloc to
run interactive jobs:

salloc -N 1 -p ivygpu -t 5

srun - Run a parallel job on cluster managed by Slurm.
Use srun to identify your allocated nodes after running
salloc:
srun hostname #or
squeue -u <netid>
ssh nodename

SLURM Commands

squeue - view information about jobs located in the
Slurm scheduling queue.

List jobs for your user account:
squeue -u <username>

Estimate when a job will start:
squeue -u username --start

List by job status:
squeue -u username -t RUNNING or PENDING

SLURM job status

Check Status of Job by User

[user@login4 ~]$ squeue -u <username>
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 2325403 defq job_OpenMP.sh user PD 0:00 1 (Resources)

 Jobs typically pass through several states in the course of their execution.
 The typical states are PENDING, RUNNING, SUSPENDED, COMPLETING,
and COMPLETED. An explanation of each state follows.

CA = CANCELLED
CD = COMPLETED
CG = COMPLETING
F = FAILED
NF = NODE_FAIL
PD = PENDING
R = RUNNING
S = SUSPENDED
TO = TIMEOUT

SLURM Commands

sbatch - Submit a batch script to Slurm
sbatch <sumbit_script.sh>

scancel - used to signal or cancel jobs, job arrays or job
steps.

scancel <jobid>

sinfo - view information about Slurm nodes and
partitions.

SLURM COMMANDS (cont.)

● salloc - Obtain a Slurm job allocation (a set of nodes), execute a command,
and then release the allocation when the command is finished.

● squeue - view information about jobs located in the Slurm scheduling queue.

● scancel - Used to signal jobs or job steps that are under the control of Slurm.

● sbatch - Submit a batch script to Slurm.

● srun - Run parallel jobs

hello-mpi.py
I

This small Python program will list an mpi process number and the node it is running on. Copy
the text into a document called "hello-mpi.py" and save it.

#hello.py
from mpi4py import MPI
import socket

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = MPI.COMM_WORLD.Get_size()
thishost = socket.gethostname()

print "hello world from process ", rank, " of ",size, "
on ", thishost < ------ THIS IS ALL ONE LINE

How to submit job script I

Load the current MPI module so we can run our program correctly:

module load openmpi/1.8/gcc/4.9.2/cpu
module load python/2.7.6

Check your home directory to make sure your compiled program is there:

ls -la hello*

How to submit job script I

Create a SLURM script using an editor such as vi or emacs using steps 1 through 3. The script
(or file) can be called anything you want but should end in .sh (i.e. submit.sh).

Step 1: Resource Specification

[user@login4 ~]$ nano submit.sh

#!/bin/sh
#SBATCH --time 5:00
#SBATCH -o testing%j.out
#SBATCH -e testing%j.err
#SBATCH -p defq -N 1
#SBATCH --mail-user=<username>@gwu.edu
#SBATCH --mail-type=ALL
module load openmpi/1.8/gcc/4.9.2/cpu
module load python/2.7.6

 mpirun -n 8 python /home/<username>/hello.py
Step 2: Submit job

module load slurm
[user@login4 ~]$ sbatch submit.sh
Submitted batch job 2325403

How to submit job script I

SLURM will email you when you job has finished. Once the job is finished, SLURM will place a
.out file and a .err file (if there are errors) in the directory with your submit script.

$> ls slurm*
slurm-2333627.out slurm-2333631.out slurm-2333633.out
slurm-2333629.out slurm-2333632.out slurm-2333636.out

The .out file is the result of your job. Cat or less the file to show you the results.

$> cat slurm-2333636.out
Process 1 on node991.cm.cluster out of 8
Process 3 on node991.cm.cluster out of 8
Process 7 on node991.cm.cluster out of 8
Process 5 on node991.cm.cluster out of 8
Process 4 on node991.cm.cluster out of 8
Process 6 on node991.cm.cluster out of 8
Process 0 on node991.cm.cluster out of 8
Process 2 on node991.cm.cluster out of 8

Reporting Job Errors

● Email to hpchelp@gwu.edu
● Include .err file
● Include submit script
● Include what modules you loaded

